ANGEL - Machine Learning Classification
نویسنده
چکیده
The Automated Network Games Enhancement Layer (ANGEL) project aims to leverage machine learning techniques to automate the classification and isolation of interactive (e.g. games, voice over IP) and noninteractive (e.g. web) traffic. This information is then used to dynamically reconfigure the network to improve the Quality of Service provided to the current interactive traffic flows and subsequently deliver improved performance to the end users. In this document we first describe the current solutions for network traffic classification and their shortfalls. Then we present the novel approach of classifying network traffic flows based on machine learning techniques and statistical flow attributes such as packet length and interarrival time statistics. We evaluate if a machine learning based approach meets the accuracy and performance requirements of the ANGEL architecture and select appropriate machine learning algorithms. The evaluation is based on results obtained for real game traffic captured in the network.
منابع مشابه
Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملAutomatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملAn informational energy LVQ approach for feature ranking
Input feature ranking and selection represent a necessary preprocessing stage in classification, especially when one is required to manage large quantities of data. We introduce a weighted LVQ algorithm, called Energy Relevance LVQ (ERLVQ), based on Onicescu’s informational energy [10]. ERLVQ is an incremental learning algorithm for supervised classification and feature ranking.
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملMachine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction
Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...
متن کامل